Answer:
Option D
Explanation:
We have ,
f(x) is a quadratic equation
$\therefore$ $f(x)=ax^{2}+bx+c$
f(0)= c, f(1)=a+b+c
$\Rightarrow$ f(0)+f(1)=0
$\Rightarrow$ c+a+b+c=0
$\Rightarrow$ a+b+2c=0 ........(i)
$f(-2)=a(-2)^{2}+b(-2)+c$
0=4a-2b+c
$\Rightarrow$ $4a-2b+c=0$ .........(ii)
From Eqs.(i) and (ii) , we getr
$\frac{a}{5}=\frac{b}{7}=\frac{c}{-6}$
$\Rightarrow$ a=5k,b=7k,c=-6k
$\therefore$ $ f(x)=k(5x^{2}+7x-6)$
$\Rightarrow$ $5x^{2}+7x-6=0$
$\Rightarrow$ $5x^{2}+10x-3x-6=0$
$\Rightarrow$ $5x(x+2)-3(x+2)=0$
$\Rightarrow$ (x+2)(5x-3)=0
$x=-2,x=\frac{3}{5}$
Hence ,$f(\frac{3}{5})=0$